A vminteq program használatának gyakorlása/1

Visual MINTEQ

×

Adatbevitelre és a számítás indítására a **vminteq** program főmenüjének alsó, piros kerettel kijelölt részét használjuk

A kindulási oldat összetevőit a Select from list keretének jobb szélén levő ⊌ jelre kattintva kinyíló listából kell kiválasztani.

Add components

Válasszuk ki a listából a "Pb+2" iont. A Total concentration mezőbe írjuk be a koncentrációt: "0,5". Az[Add to list]–re kattintva vigyük be komponensek listájába.

Add comp	onents			
Component name	Total concentration	Fixed a	ctivity	
Pb+2 V	0,5	0	Add to list	
Show organic components	Molal		View / edit list	Run MINTEQ
				10
Add SOM			Reset	view output files

Ezután válasszuk ki a listából a "NO3-1" iont. A Total concentration mezőbe írjuk be a koncentrációt: "1". Az Add to list –re kattintva vigyük be komponensek listájába.

A View / edit list –re kattintva megtekinthetjük a komponensek aktuális listáját.

Components	in the present prob	lem		
Component name	Total concentration* Molal	Act guess?**		
H+1	0		Delete this component	
Pb+2	0.5		Delete this component	Back to main menu
NO3-1	1		Delete this component	P

A listában 0,5 mol/l $Pb(NO_3)_2 = Pb^{++} + 2*NO_3^{--}$ ionjait látjuk. A listában levő ionokat törölhetjük Delete this component , vagy koncentrációjukat módosíthatjuk. A H⁺ -iont 0 koncentrációval automatikusan adja hozzá a rendszer. Back to main menu -re kattintva visszatérünk a főmenübe.

- re kattintva elindítjuk a számítást

e Options			
pH Ionic strength Concentrations and	1.097 Sum o D.6269 Sum o Char activities of aqueous inorgan	No. of iterations 28 of cations (eq/kg) 5.0790E-01 of anions (eq/kg) 5.0790E-01 rge difference (%) 0.000002	to Excel
	Concentration	Activity	Log activity
l+1	1.0776E-04	7.9942E-05	-4.097
103-1	5.0790E-01	3.7680E-01	-0.424
	1 CEAEE 10	d competence	
H-	1.6040E-10	1.22/5E-10	-9.911
H-	1.6545E-10	1.22/5E-10	-9.911
b(NO3)2 (aq)	1.1100E-01	1.2823E-01	-0.892
H-	1.6545E-10	1.22/5E-10	-9.911
b(NO3)2 (aq)	1.1100E-01	1.2823E-01	-0.892
b(OH)2 (aq)	3.7247E-11	4.3031E-11	-10.366
)H-	1.6545E-10	1.22/5E-10	-9.911
'b(NO3)2 (aq)	1.1100E-01	1.2823E-01	-0.892
'b(OH)2 (aq)	3.7247E-11	4.3031E-11	-10.366
'b(OH)3-	7.1195E-18	5.2818E-18	-17.277
0H-	1.6545E-10	1.2275E-10	-9.911
/b(NO3)2 (aq)	1.1100E-01	1.2823E-01	-0.892
/b(OH)2 (aq)	3.7247E-11	4.3031E-11	-10.366
/b(OH)3-	7.1195E-18	5.2818E-18	-17.277
/b+2	1.1869E-01	3.5956E-02	-1.444
0H-	1.6545E-10	1.2275E-10	-9.911
'b(NO3)2 (aq)	1.1100E-01	1.2823E-01	-0.892
'b(OH)2 (aq)	3.7247E-11	4.3031E-11	-10.366
'b(OH)3-	7.1195E-18	5.2818E-18	-17.277
b+2	1.1869E-01	3.5956E-02	-1.444
b2OH+3	9.2794E-05	6.3174E-06	-5.199
0H-	1.6545E-10	1.2275E-10	-9.911
'b(NO3)2 (aq)	1.1100E-01	1.2823E-01	-0.892
'b(OH)2 (aq)	3.7247E-11	4.3031E-11	-10.366
'b(OH)3-	7.1195E-18	5.2818E-18	-17.277
'b+2	1.1869E-01	3.5956E-02	-1.444
'b2OH+3	9.2794E-05	6.3174E-06	-5.199
'b3(OH)4+2	4.3851E-12	1.3284E-12	-11.877
H-	1.6545E-10	1.2275E-10	-9.911
b(NO3)2 (aq)	1.1100E-01	1.2823E-01	-0.892
b(OH)2 (aq)	3.7247E-11	4.3031E-11	-10.366
b(OH)3-	7.1195E-18	5.2818E-18	-17.277
b+2	1.1869E-01	3.5956E-02	-1.444
b2OH+3	9.2794E-05	6.3174E-06	-5.199
b3(OH)4+2	4.3851E-12	1.3284E-12	-11.877
b4(OH)4+4	5.6718E-09	4.7763E-11	-10.321
0H-	1.6545E-10	1.2275E-10	-9.911
2b(NO3)2 (aq)	1.1100E-01	1.2823E-01	-0.892
2b(OH)2 (aq)	3.7247E-11	4.3031E-11	-10.366
2b(OH)3-	7.1195E-18	5.2818E-18	-17.277
2b+2	1.1869E-01	3.5956E-02	-1.444
2b2OH+3	9.2794E-05	6.3174E-06	-5.199
2b3(OH)4+2	4.3851E-12	1.3284E-12	-11.877
2b3(OH)4+4	5.6718E-09	4.7763E-11	-10.321
2bNO3+	2.7011E-01	2.0039E-01	-0.698

Display saturation indices

Equilibrated mass distribution

Execution time (s): 0.21875

Back to input menu

A kapott main Output tartalmazza a számított pH-t 4,097 mutatva a savas hidrolízis eredményét. A táblázat tartalmazza a bevitt ionok, és a vizes oldatban belőlük képződött komplex ionok összetételét és koncentrációját. A fontosabbak %-os arányát a View species distribution - ra kattintva láthatjuk.

Az 5. dián is látható main Output menübe visszatérve az Equilibrated mass distribution -ra kattintva megkapjuk a formától függetlenül oldatban levő kiindulási anyagok oldatban levő (dissolved), illetve csapadékba (precipitated) kerülő hányadát (0).

C-000L-0+00L-00+C-	lotal dissolved	% dissolved	Total sorbed	% sorbed	I otal precipitated	% precipitated
+1	-4.28//E-09	100.000	0	0.000	0	0.000
103-1	5.0000E+00	100.000	0	0.000	0	0.000

A <u>Back to main output menu</u>-re kattintva, majd onnan a Back to input menu-re kattintva léphetünk vissza **main menu** -be.

Vizsgáljuk meg a programmal a $Pb(NO_3)_2 + Na_2SO_4 = \underline{PbSO}_4 + 2*NaNO_3$ reakció eredményét!

Ehhez a 2. dián látható módon adjunk a komponensek listájához 1 mól Na⁺ és 0,5 mól SO₄⁻⁻ iont. Ha komponensek listája az alábbi

Components	in the present prob	lem		
Component name	Total concentration* Molal	Act guess?**		
H+1	0		Delete this component	8 1
Pb+2	0.5		Delete this component	Back to main menu
NO3-1	1		Delete this component	
Na+1	1		Delete this component	
S04-2	0,5		Delete this component	Species tableau

akkor a main menu-ból indítsuk el újra a számolást

	Concentration	Activity	Log activity	^
H+1	2.2312E-06	1.7264E-06	-5.763	
HSO4-	5.0732E-08	3.9254E-08	-7.406	
Na+1	8.9013E-01	6.8874E-01	-0.162	
NaNO3 (aq)	1.0872E-01	1.3352E-01	-0.874	
NaOH (aq)	3.9931E-09	4.9039E-09	-8.309	
NaSO4-	1.1382E-03	8.8065E-04	-3.055	
NO3-1	8.8900E-01	6.8786E-01	-0.162	
OH-	7.3095E-09	5.6557E-09	-8.248	
Pb(NO3)2 (aq)	6.7457E-04	8.2843E-04	-3.082	
Pb(OH)2 (aq)	1.4421E-10	1.7710E-10	-9.752	
РЬ(ОН)3-	1.2945E-15	1.0016E-15	-14.999	
Pb(SO4)2-2	3.1070E-08	1.1137E-08	-7.953	
Pb+2	1.9447E-04	6.9703E-05	-4.157	
Pb2OH+3	1.1005E-08	1.0939E-09	-8.961	
Pb3(OH)4+2	1.2170E-13	4.3621E-14	-13.360	
Pb4(OH)4+4	1.8422E-13	3.0405E-15	-14.517	~
View species distribution	Display saturation indices	Equilibrated mass distribution		
Execution time (s): 0.2421875	Amount of finite solids		Back to input m	enu

A main inputban látható, hogy az oldatban levő ólomkoncentráció a korábbi számolás eredményéhez (5. dia) képest jelentősen lecsökkent. Az Equilibrated mass distribution –ra kattintva …

Ha az előző dián látottaktól eltérést tapasztalnak:

iterations	30
ns (eq/kg)	1.0194E+00
ns (eq/kg)	1.0194E+00
erence (%)	0.000000

Concentrations and activities of aqueous inorganic species (mol / I)

Print to Excel

	Concentration	Activity	Log activity	^
H+1	1.8168E-05	1.4972E-05	-4.825	
HSO4-	4.9080E-05	4.0445E-05	-4.393	
Na+1	8.0486E-01	6.6326E-01	-0.178	
NaNO3 (aq)	7.2876E-02	9.5875E-02	-1.018	
NaOH (aq)	4.0509E-10	5.3294E-10	-9.273	
NaSO4-	1.2227E-01	1.0076E-01	-0.997	
NO3-1	6.2238E-01	5.1288E-01	-0.290	
OH-	7.7450E-10	6.3825E-10	-9.195	
Pb(NO3)2 (aq)	7.9509E-02	1.0460E-01	-0.980	
Pb(OH)2 (aq)	3.8937E-10	5.1224E-10	-9.291	
Pb(OH)3-	3.9673E-16	3.2694E-16	-15.486	
Pb(SO4)2-2	7.7412E-02	3. Warning!		
Pb+2	3.4326E-02	1.		
Pb2OH+3	3.6331E-05	6.1 The input	strangth is high (s 1 M). With t	ha activity of
Pb3(OH)4+2	1.7971E-10	8.1 Inetonia	chosen the speciation results a	re not relial

×

OK

orrection ble!

View species distribution

Pb4(OH)4+4

Display saturation indices

2.9005E-08

Back to input menu

Az eltérés, iiletve hiba oka jobban látható az OK, majd az Equilibrated mass distribution – ra kattintva.

1.

Equilibrat

Láthatjuk anyagok oldatban levő (dissolved), illetve csapadékba (precipitated) kerülő hányadát:

Distribution of components between dissolved, sorbed and precipitated phases

(Concentrations in molal)

Component	Total dissolved	% dissolved	Total sorbed	% sorbed	Total precipitated	% precipitated
H+1	-4.5765E-11	100.000	0	0.000	0	0.000
Na+1	1.000E+00	100.000	0	0.000	0	0.000
NO3-1	1.000E+00	100.000	0	0.000	0	0.000
Pb+2	5.0000E-01	100.000	0	0.000	0	0.000
SO4-2	5.0000E-01	100.000	0	0.000	0	0.000

Feltűnő, hogy a korábbi tudásunkkal ellentétben a PbSO₄ nem a csapadékban, hanem 100%-ban oldatban (dissolved) található.

A hiba kijavításához a Back to main output menu –re, majd a Back to input menu-re kattintva lépjnk vissza main menu –be!

Válasszuk ki a főmenű **Parameters** pontját!

lerminate if charge imbalance	ce exceeds 30 %? Cres (• No	
Choose the number of iteratio	ns: 200 500 2000 5000	
	Davies Davies b parameter 0.3	
Method for activity correction	C Debye-Hückel	
	C SIT	
Choose on what basis input	concentrations are defined Solution	
Oversaturated solids are not allow	ved to precipitate (Exceptions: Solids specified as infinite, finite or possible	C
Oversaturated solids are allowed	to precipitate, but only after the final answer is reached	0
Oversaturated solids are allowed	to precipitate each time a mineral precipitates or dissolves	C
Spreadsheet program:	Microsoft Excel WPS Spreadsheets	
Choose paths and default data	abases	
Path for user-editable files	F:\TL2020\Oktatás\Chemtech\gyak\vminteq\Vminteq31	Choose oth
Main thermodynamic database	F:\TL2020\Oktatás\Chemtech\gyak\vminteg\Vminteg31\thermo.vdb	Choose oth
Solids database	F:\TL2020\Oktatás\Chemtech\gyak\vminteq\Vminteq31\type6.vdb	Choose oth
Component database		
component uatabase	F:\1L2020\Oktatas\Chemtech\gyak\vminteq\vminteq31\comp_2008.vdb	Choose oth

Use these databases in the current problem

Save and Quit

Go To Page 2

Information on results pages, parameters for predefined surface complexation models

Számunkra most a középső 3 választási lehetőség a fontos.

Alapértelmezetten a program megengedi az instabil túltelített oldat létrejöttét a csapadékkiválás tiltásával.

Oversaturated solids are not allowed to precipitate (Exceptions: Solids specified as infinite, finite or possible	\odot
Oversaturated solids are allowed to precipitate, but only after the final answer is reached	0
Oversaturated solids are allowed to precipitate each time a mineral precipitates or dissolves	0

Ahhoz, hogy túltelítettség esetén a program az egyensúlyi helyzetnek megfelelő csapadékkiválással kalkuláljon a 3. pontot kell bejelölni.

 Oversaturated solids are not allowed to precipitate
 (Exceptions: Solids specified as infinite, finite or possible

 Oversaturated solids are allowed to precipitate, but only after the final answer is reached
 C

 Oversaturated solids are allowed to precipitate each time a mineral precipitates or dissolves
 C

A Save and Quit gomb lenyomásával visszajutunk a főmenübe és onnan elvégezhetjük újra a számítást és a 9. dián levő helyes eredeményhez juthatunk.

Onnan az **Equilibrated mass distribution** –ra kattintva jutun a következő diához, ahol jól látszik a csapadékkiválás eredménye.

... láthatjuk, hogy az ólom és a szulfát több mint 99%-a a csapadékba került, míg a nátrium és a nitrát ionok 100%-a oldatban marad.

🙀 Equilibrated mass distribution - Visual MINTEQ

Distribution of components between dissolved, sorbed and precipitated phases (Concentrations in molal)								
Component	Total dissolved	% dissolved	Total sorbed	% sorbed	Total precipitated	% precipitated		
H+1	9.7954E-07	100.000	0	0.000	0	0.000		
Va+1	9.9999E-01	100.000	0	0.000	0	0.000		
VO3-1	9.9999E-01	100.000	0	0.000	0	0.000		
Pb+2	1.7934E-03	0.359	0	0.000	4.9821E-01	99.641		
504-2	1.7939E-03	0.359	0	0.000	4.9821E-01	99.641		

Back to main output menu

X

From Wikipedia, the free encyclopedia

Anglesite is a lead sulfate mineral with the chemical formula PbSO₄. It occurs as an oxidation product of primary lead sulfide ore, galena. Anglesite occurs as prismatic orthorhombic crystals and earthy masses, and is isomorphous with barite and celestine. It contains 74% of lead by mass and therefore has a high specific gravity of 6.3. Anglesite's color is white or gray with pale yellow streaks. It may be dark gray if impure.

It was first recognized as a mineral species by William Withering in 1783, who discovered it in the Parys copper-mine in Anglesey; the name anglesite, from this locality, was given by F. S. Beudant in

Anglesite from Morocco

General					
Category	Sulfate minerals				
Formula	PbSO ₄				

C

HF: Ismételjük meg a számítást 1/10-ed résznek megfelelő koncentrációkkal!

Component name	Total concentration* Molal
H+1	0
Pb+2	0.05
NO3-1	0,1
Na+1	0,1
S04-2	0,05

Másolja ki Excel fájlokba az outputokat! Szerkessze őket össze egy fájlba!

Figyelje meg a kétféle futás eredményének fontosabb különbségeit!